ISBN Deep Reinforcement Learning in Action, Science Fiction, English, Paperback, 325 pages

ISBN Deep Reinforcement Learning in Action book Science Fiction English Paperback 325 pages

ISBN Deep Reinforcement Learning in Action, Science Fiction, English, Paperback, 325 pages

Offres:

Product Information

Summary Humans learn best from feedback—we are encouraged to take actions that lead to positive results while deterred by decisions with negative consequences. This reinforcement process can be applied to computer programs allowing them to solve more complex problems that classical programming cannot. Deep Reinforcement Learning in Action teaches you the fundamental concepts and terminology of deep reinforcement learning, along with the practical skills and techniques you’ll need to implement it into your own projects. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Deep reinforcement learning AI systems rapidly adapt to new environments, a vast improvement over standard neural networks. A DRL agent learns like people do, taking in raw data such as sensor input and refining its responses and predictions through trial and error. About the book Deep Reinforcement Learning in Action teaches you how to program AI agents that adapt and improve based on direct feedback from their environment. In this example-rich tutorial, you’ll master foundational and advanced DRL techniques by taking on interesting challenges like navigating a maze and playing video games. Along the way, you’ll work with core algorithms, including deep Q-networks and policy gradients, along with industry-standard tools like PyTorch and OpenAI Gym. What's inside     Building and training DRL networks     The most popular DRL algorithms for learning and problem solving     Evolutionary algorithms for curiosity and multi-agent learning     All examples available as Jupyter Notebooks About the reader For readers with intermediate skills in Python and deep learning. About the author Alexander Zai is a machine learning engineer at Amazon AI. Brandon Brown is a machine learning and data analysis blogger. Table of Contents PART 1 - FOUNDATIONS 1. What is reinforcement learning? 2. Modeling reinforcement learning problems: Markov decision processes 3. Predicting the best states and actions: Deep Q-networks 4. Learning to pick the best policy: Policy gradient methods 5. Tackling more complex problems with actor-critic methods PART 2 - ABOVE AND BEYOND 6. Alternative optimization methods: Evolutionary algorithms 7. Distributional DQN: Getting the full story 8.Curiosity-driven exploration 9. Multi-agent reinforcement learning 10. Interpretable reinforcement learning: Attention and relational models 11. In conclusion: A review and roadmap

Books ISBN
Product
Name
ISBN Deep Reinforcement Learning in Action book Science Fiction English Paperback 325 pages
Category
Brand
Features
Genre
Science Fiction
Book cover type
Paperback
Language version
English
Written by
Alexander Zai and Brandon Brown
Number of pages
325 pages
Publisher
Manning
Release date (DD/MM/YYYY)
28/04/2020
International Standard Book Number (ISBN)
9781617295430
NOTE: The above information is provided for your convenience only, and we cannot guarantee its accuracy with the seller.

Customer Reviews

Share your opinion on the product or read reviews from other members.